Randomness, lowness and degrees
نویسندگان
چکیده
We say that A ≤LR B if every B-random number isA-random. Intuitively this means that if oracle A can identify some patterns on some real !, oracle B can also find patterns on !. In other words, B is at least as good as A for this purpose. We study the structure of the LR degrees globally and locally (i.e., restricted to the computably enumerable degrees) and their relationship with the Turing degrees. Among other results we show that whenever α is not GL2 the LR degree of α bounds 2א0 degrees (so that, in particular, there exist LR degrees with uncountably many predecessors) and we give sample results which demonstrate how various techniques from the theory of the c.e. degrees can be used to prove results about the c.e. LR degrees. §
منابع مشابه
Benign cost functions and lowness properties
We show that the class of strongly jump-traceable c.e. sets can be characterised as those which have sufficiently slow enumerations so they obey a class of well-behaved cost function, called benign. This characterisation implies the containment of the class of strongly jump-traceable c.e. Turing degrees in a number of lowness classes, in particular the classes of the degrees which lie below inc...
متن کاملHyperimmune-free degrees and Schnorr triviality
We investigate the relationship between lowness for Schnorr randomness and Schnorr triviality. We show that a real is low for Schnorr randomness if and only if it is Schnorr trivial and hyperimmune free.
متن کاملLowness for Bounded Randomness Rod Downey and Keng
In [3], Brodhead, Downey and Ng introduced some new variations of the notions of being Martin-Löf random where the tests are all clopen sets. We explore the lowness notions associated with these randomness notions. While these bounded notions seem far from classical notions with infinite tests like Martin-Löf and Demuth randomness, the lowness notions associated with bounded randomness turn out...
متن کاملLowness for Computable Machines
Two lowness notions in the setting of Schnorr randomness have been studied (lowness for Schnorr randomness and tests, by Terwijn and Zambella [19], and by Kjos-Hanssen, Stephan, and Nies [7]; and Schnorr triviality, by Downey, Griffiths and LaForte [3, 4] and Franklin [6]). We introduce lowness for computable machines, which by results of Downey and Griffiths [3] is an analog of lowness for K. ...
متن کاملLowness for Weak Genericity and Randomness
We prove that lowness for weak genericity is equivalent to semicomputable traceability which is strictly between hyperimmune-freeness and computable traceability. We also show that semi-computable traceability implies lowness for weak randomness. These results refute a conjecture raised by several people.
متن کاملLowness for uniform Kurtz randomness
We propose studying uniform Kurtz randomness, which is the uniform relativization of Kurtz randomness. One advantage of this notion is that lowness for uniform Kurtz randomness has many characterizations, such as those via complexity, martingales, Kurtz tt-traceability, and Kurtz dimensional measure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 73 شماره
صفحات -
تاریخ انتشار 2008